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Reaction-diffusion model for the growth of avascular tumor
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A nutrient-limited model for avascular cancer growth including cell proliferation, motility, and death is
presented. The model qualitatively reproduces commonly observed morphologies for primary tumors, and the
simulated patterns are characterized by its gyration radius, total number of cancer cells, and number of cells on
tumor periphery. These very distinct morphological patterns follow Gompertz growth curves, but exhibit
different scaling laws for their surfaces. Also, the simulated tumors incorporate a spatial structure composed of
a central necrotic core, an inner rim of quiescent cells and a narrow outer shell of proliferating cells in
agreement with biological data. Finally, our results indicate that the competition for nutrients among normal
and cancer cells may be a determining factor in generating papillary tumor morphology.
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I. INTRODUCTION proliferation, motility, and death are locally regulated by the
concentration of growth factors produced by each cancer
Cancer is a disease derived, with few exceptions, frontell. This model was able to generate compact, connected,
mutations on single somatic cells that disregard the normand disconnected morphologies that progress in time accord-
controls of proliferation, invade adjacent normal tissues, andng to Gompertz growth curves, and for which the tumor
give rise to secondary tumofmetastasison sites different ~gyration radii scale as in the Eden model for an asymptoti-
from its primary origin[1]. Although cancers are extremely cally large number of cells. These features were shown to be
diverse and heterogeneous, a small number of pivotal stepgdependent of the detailed functional form of the micro-
associated with both deregulated cell proliferation and supScopic growth rules. In contrast, the structure of the tumor
pressed cell death is required for the development of any anorder is influenced by the nature of the growth rules as
all tumors. Indeed, all neoplasms evolve according to a uniindicated by the different scaling laws for the number of
versal scheme of progressimg,]_ Neop|astic cells accumu- peripheral cancer cells. In particular, for disconnected and
late a series of genetic or epigenetic changes along the tuméPnnected patterns the surface widths scale with exponents
progression in response to natural selection and as an intéimilar to those observed in bacterial colonies. Although the
grated defense program against stress situations similar f@milarities between the simulated and histological tumor
the response of a bacterial colony facing severe and sugatterns were encouraging, the model was unable to generate
tained threat§4]. But, unlike bacterial growth, tumor pro- Papillary and ramified morphologies found in many of epi-
gression involves a complex network of interactions amonghelial cancers and trichoblastomas. In consequence, we were
cancer cells and its host microenvironmébi. It is well led to investigate the role of nutrient competition in neopla-
known that stressed bacterial colonies can develop diffusiorsic development, a biological feature excluded in our previ-
limited fractal pattern§6,7]. Recently, normal and tumor cell ous model but central in the growth of fractal bacterial colo-
patternsin vivo andin vitro were characterized by their frac- Nnies. Indeed, cancer cells subvert the evolutionary
tal dimensions and cluster size distribution functif®s 10, = adaptations to multicellularity and revert to a largely
reinforcing the great current interest in the search for basi@utrient-limited style of growth.
principles of growth in living organisms, which are the most  In this paper we analyze the avascular cancer growth in a
complex and challenging self-organized systems. In particumodel including cell proliferation, motility, and death as well
lar, for cancer growth, one of the most aggressive phenomas competition for nutrients among normal and cancer cells.
ena in biology, numerous mathematical models have recentiyhe cell actiongdivision, migration, and deattare locally
been investigated. Examples include studies, based on clagontrolled by the nutrient concentration field. In Sec. Il we
sical reaction-diffusion equations, of the growth of tumorintroduce the cancer growth model. In Sec. IIl the simula-
spheroids[11], cancer evolution and its interation with the tional results for the tumor patterns, growth curves, and scal-
immune systeni12], and the fundamental problem of tumor iNg laws are discussed. In Sec. IV the diffusion of growth
angiogenesi§13,14. factors secreted by the cancer cells are added to the nutrient-
Recently, we[15,16] proposed a diffusion-limited model limited model. Finally, we draw some conclusions in Sec. V.
to simulate the growth of carcinoma situ in which cell

Il. THE CANCER GROWTH MODEL

*Electronic address: silviojr@fisica.ufmg.br The basic biological principles included in the model are
"Electronic address: mmartins@mail.ufv.br cell proliferation, motility, and death, and competition for
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nutrients among normal and cancer cells. Nutriénis/gen, IM(X,t) b R R

amino acids, glucose, metal ions, gtdiffuse from a capil- —;  ~DV'MEH—yM X Doy(X,1)

lary vessel through the tissue towards the individunarmal

and cancercells. Under restricted nutrient supply the growth —AmYM(Xt)o(X,t) 2

rate of cancer cells is limited by its ability to compete for . ) . )
nutrients with the normal cells. In our model the division, in which the nutrient absorption terms are proportional to the

migration, and death of each cancer cell is controlled by th ee}"er?tci);tzgtrllzr:rsieﬂesg:;;nme?gr:] 3:2’5 ?grdnltt)rlri gszﬁ;nggngg}
nutrient concentration in its local microenvironment. P

cells by factors\\y and\, . It is important to notice that the
present model assumes the simplest form for the nutrient
diffusion phenomena, i.e., linear equations with constant co-
efficients. Also,\ >\, is used, reflecting the larger cancer
The studied system consists of a tissue fed by a singleells affinity for essential nutrients.
capillary vessel. The tissue is represented by a square lattice The boundary conditions satisfied by the nutrient concen-
of size L+1)X(L+1) and lattice constarit. The capillary tration fields areN(x=0)=M(x=0)=K,, representing the
vessel, localized at the top of the latticexat 0, is the unique continuous and fixed supplies of nutrients provided by the
source from which nutrients diffuse through the tissue to-capillary vessel; N(y=0)=N(y=LA) and M(y=0)
wards the individuals cells. Although a tumor mass is com-=M(y=LA), corresponding to the periodic boundary con-
posed of different cell subpopulatiofig], we shall consider ditions along thex axis; finally, Neumann boundary condi-
only three types: normal, cancer, and tumor necrotic cellstions, IN(x=LA)/dy=dM(x=LA)/dy=0, are imposed on
Any site, with coordinatesi=(iA,jA),i,j=0,1,2,..1, is the t_)order o_f the tis;ue. The hypothesis thay a bl_ood ve_ssel
occupied by only one of these cell types. In contrast to norProvides a fixed nutrient supply to the cells in a tissue is a
mal cells, one or more cancer cells can pile up in a given siteSiMPplification that neglects the complex response of the vas-
In turn, tumor necrotic cells are inert and, for simplicity, will cular system to metabolic changes of cell beha/i®.

be considered always as a single dead cell. Thus, each lattice clin 20rdﬁr to re(iquce the nlumber quﬁarametgrs%_ in 5@5'
site can be thought of as a group of actual cells in which thé" (2), the new dimensionless variables are defined,

A. The tissue

normal, necrotic, and cancer cell populations assume one of Dt % N
the possible valueso,(X,t)=0y4(X,t)=0,1 and o(X,t) t'=—, X'=—, N=—,
) L ’ : A A Ko
=0,12,..., respectively. As initial “seed” a single cancer
cell in the half of the lattice X=LA/2) and at a distanc¥ M y
from the capillary vessel is introduced in the normal tissue, M’ = R a=A \/; 3
0

in agreement with the theory of the clonal origin of cancer
[17]. Periodic boundary conditions along the horizontal axisysing these new variables in Eq4) and (2) and omitting
are used. The row=0 represents a capillary vessel and thetne primes, we obtain

sites withi=L+1 constitute the external border of the

tissue. A\
E:VZN—QZNO},—)\N&ZNUC 4
B. The nutrients
. and
As considered by Scalerandt al. [18], we assume that
dividing cancer cells are especially vulnerable to some criti- M
, , . . —=V?M-a’Mo,— A\ya’Mo (5)
cal nutrients such as iron, essential for DNA synthesis and, at nT M c

therefore, for cell division. The many other nutrients neces-
sary for eucariotic cells are supposed to affect mainly thefor the diffusion equations describing the nutrients concen-
motility and death of the cancer cells. So, the nutrients areration fields. In addition, the boundary condition on the cap-
divided into two groups: essential and nonessential for cellllary vessel becomedl(x=0)=M(x=0)=1 and a value
proliferation, described by the concentration fieNéx,t)  A=1 is defined.

and M(X,t), respectively. However, it is assumed that both

nutrient types have the same diffusion coefficients and con- C. Cell dynamics

sumption rates by the normal cells. These concentration

fields obey the diffusion equations Each tumor cell can be selected at random, with equal

probability, and carry out one of three actions.

IN(X,1) ot _ . (1) Division. Cancer cells divide by mitosis with probabil-
i DVINX D= yN(X Hoy(X,1) ity Pgy. If the chosen cell is inside the tumor, its daughter
will pile up at that site, andr (X) — o.(X) + 1. Otherwise, if
—ANYN(X D) oe(X,1) (1) the selected cell is on the tumor border, its daughter cell will

occupy at random one of their nearest neighbor siteson-
taining a normal or a necrotic cell and, thereforg(X’)
and =1 ando, 4(X")=0. The mitotic probabilityPy;, is deter-
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mined by the concentration per cancer cell of the essentiglossible even inside the tumor. Finally, the model parameters
nutrientsN present on the microenvironment of the selectedfy;,, mow @nd fye, Which characterize the cancer cells’ re-
cell, sponse to nutrient concentrations and embody complex ge-
5 netic and metabolic processes, should be interpreted in terms

) ©6) of the underlying biochemistry and molecular biology, a still
ocOav | open problem. The other three model parameters,,, and

Awm . associated with the consumption of essential and non-

The Gaussian term is included in order to produce a sigmoi@ssential nutrients for cell proliferation by the normal and
curve saturated to the unity, and the model paraméjgr cancer cells, should be more easily determined from biologi-
controls the shape of this sigmoid. cal experiments.

(2) Migration. Cancer cells migrate with probability It is worthwhile to note that from the point of view of the
Pmov- A selected cell inside the tumor, at a site will move  so-called kinetic cellular theory, which provides a general
to a nearest neighbor sitg’ chosen at random. Thus, framework for the statistical description of the population
o (X")—o(X")+1 and, clearly,o(X)—o.(X)—1. Other- dynamics of interacting cell§12], the local probabilities
wise, if the selected cell is on the tumor border, the invasiorP, , P, andP4, can be thought of as an effective kinetic
of a normal or necrotic nearest neighbor site will be depencellular model.
dent on the number of cancer cells present in the selected
site. If in this site there is a single cancer cell, it migrates by D. Computer implementation
interchanging its position with that of the invaded one. If
there are other cancer cells in the same site of the one s

lected to move, the migrating cell will occupy the position of . i .
g d Py b (4) and (5) are numerically solved in the stationary state

the normal or necrotic nearest neighbor cell, which, in turn, h h rel . hod idi h :
disappears. In terms of cell populations the migration of & ough relaxation methods, providing the nutrient concen-

cell on the tumor border corresponds to the following opera:[ratior? at any lattice site. Themdc(t) cancer cells are se-

tions: oo(X')=1, o(X)—o(X)—1, on4X')=0, and quentially selected at random with equal probability. For
N Cc 1 C C 1 n, 1 . . S

Tng(R)=1 if o(X)=1. The probability of cell migration each one of them, a tentative actiddivision, death, or

P has the same functional form %, , but depends on Movementis chosen at random with equal probability and

the concentration of the nonessential nutrigdtpresent on the time is incremented bit=1/Nc(t). The selected cell

the microenvironment of the selected cell and increases witASiO" will be |mpleme_n_t§ad or not "?‘Cco“"”g to the corre-
the local population of cancer cells. So spondent local probabilities determined by E6), (7), or
' (8). If the selected cell divides or dies, therefore, changing

M \2 the number of cancer cells that consume nutrients, we solve
PmodX) = 1—ex;{ - UC(Q_) } (7)  the diffusion equations in a small neighborhood of linear size

mov, =20 centered in the altered site. This is done in order to
take into account these local perturbations and to speed up
the computer algorithm, since the number of numerical itera-
tions needed to solve the diffusion equation is proportional to
L2. At the end of this sequence dic(t) tentatives, a new
time step begins and the entire proced(selution of the
Fiffusion equations and application of the cell dynamniiss
terated. The simulations stop if any tumor cell reaches the
capillary vessel. In all the simulations, the exact solutions for
the stationary diffusion equations in the absence of tumor
cells were used for the nutrient concentration fields=a0.

Pdiv(i) =1- ex% - (

_ The growth model simulations were implemented using
the following procedure. At each time step, the diffusion Egs.

with the model parametef,,,o, controlling the shape of this
sigmoid.

(3) Cell death Cancer cells die transforming into a ne-
crotic cell with probability Py . Thus, o.(X)— o (X)—1
and o4(X)=1 wheno, vanishes. The cell death probability
P4el is determined by the concentration per cancer cells o
the nonessential nutrientd present on the microenviron-
ment of the selected cell,

M |2
Pde|(i):exl{—( ) ,

0 Ogel

8

Ill. SIMULATIONAL RESULTS

a Gaussian distribution whose variance depends on the In Fig. 1 the most commonly observed morphologies in
model parametef ). tumor growth such as papillary, compact, and disconnected
The cell dynamics rules used in our model take into ac-are shown. Disconnected patterns, typical of round cell neo-
count that, as the cancer growth progresses, cell migratioplasies such as lymphoma, mastocytoma, and plasmacytoma,
increases near the border of the tumor due to the high avaiktorrespond to transient simulated patterns in which cancer
ability of nutrients and the increase in the number of cancecells have high motility but a low mitotic rate. In turn, if the
cells, which release a series of enzynfesllagenases, met- cell migration is very small and the high mitotic rate de-
alloproteinases, efcresponsible for the progressive destruc-mands large amounts of essential nutrients, then the simu-
tion of the extracellular matrix. Also, in the regions where lated patterns exhibit fingerlike shapes similar to the papil-
there is a high population density and an ineffective supplylary morphologies found in epithelial tumors, such as basal
of nutrients via diffusion processes, the cell division is inhib-and skin cells carcinomas, and hepatomas. If nutrient avail-
ited and, at the same time, the probability of cell death in-ability in the tissue is further reduced by an increasing cell
creases. But, under these rules cell growth and migration isonsumption, the papillarylike patterns become progres-
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FIG. 2. Simulational results of the nutrient-limited cancer
growth model. The patterns are organized as a function of nutrient
consumption rater for normal cells and the multiplicative factag
to the consumption rate of mitotic essential nutrients by the cancer
cells. The remaining four parameters of the model were fixed in
Av=10, 04,=0.3, 6,o,=> (absence of cell migrationand 6y
=0.01. The patterns are drawn in a gray scale where the darker
regions represent higher cancer cell populations. The tissue size is
500x 500, with the initial “cancer seed” 300 sites distant from the

FIG. 1. Common morphologies observed in cancer grovah. capillary. The total number of cancer cells depends on tumor mor-
Papillary pattern of a scamous papylorma,a compact solid baso- phology and attains up to»10° for compact patterns. The simu-
cellular carcinoma(e) a disconnected pattern of a plasmocytoma, lated patterns are compact for lovy values and become papillary
and (g) characteristic cell filaments of a trichoblastoma. All theseor fingerlike for high\y . For the same\y the patterns are more
histological patterns were obtained from dogs. The correspondingapillary for highera. Since the capillary vessel provides a fixed
simulated patterns are shown (o), (d), (f), and(h), respectively. nutrient supply, the dimensionless consumption rate of the normal

ivelv thi d similar to the chord fil ts of cell tissuea sets up the levels of available resources for which cancer
Sively thinner and simiiar to the chords or ilaments or CellSqq g compete. So, high and/or\ values correspond to the limit

that constitute one of the haII_marks o_f the trichoblastpmaof strong nutrient competition.
morphology. Finally, under high nutrient supply, which
means low cell consumption of both nutrient types, the simuphologies. At high nutrient consumption rates these papillary
lated patterns are compact, such as those observed for solxitterns become the rule and, for low cancer cell division,
tumors. continuously transform in thin tips, filaments, or chords of
Typical patterns generated by the present model areells. Also, the smaller the and\ values are, the larger the
shown in Figure 2. As one can see, nonspherical morpholdaction of necrotic cancer cells for a fixed cellular response
gies growing towards the capillary vessel are observed, adeading to cell deatlicontrolled byéy) is. In particular, this
cording to the rigorous results for moving boundary prob-fraction is smaller for papillary patterns than compact ones,
lems of cancer growti20]. The nutrient consumption by suggesting that the optimal growth morphology under strong
normal and cancer cells, controlled by the model parametensutrients limitation is fractal. Finally, the higher cell migra-
a, \y, and\,,, plays a central role in morphology deter- tion is, the more homogeneous the patterns are, the faster the
mination. For small values of these parameters, corresponddmor growth is, and the smaller the fraction of necrotic cells
ing to growth conditions in which individual cells demand is.
small nutrients supplies, the patterns tend to be compact and The tumor patterns generated by the present model were
circular. However, if the mitotic rate of cancer cells is small characterized by its gyration radi&g, total number of can-
due to the large amount of nutrients demanded for cell divicer cellsNc, and number of cells on tumor periphe8
sion, generating a significant nutrient competition, thesdincluding the surface of holes, if ahyThe gyration radius
compact patterns progressively assume papillarylike morRy is defined as
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TABLE |. Morphology, progress curves, and scaling laws for the patterns generated by the nutrient-

limited model.
o Growth in time Exponents
Characteristic
Morphology features Nc Ry S v o
Compact Low nutrient Gompertz Gompertz Gompertz 0.50 0.50
consumption;
Low cell motility
Papillary High nutrient Gompertz Gompertz Gompertz 0.50-0.60 0.60-1
consumption;
Low cell motility
Disconnected Low mitotic rate; Gompertz Gompertz Gompertz 0.50 1
high cell motility;
Transient behavior
10 2 these patterns, progressively destroying their fractal features.
Rg:(ﬁzl r,2) , (90  Also, the tumor growth is faster for higher cancer cell mi-
=

gration.
An interesting result, shown in Fig. 4, is the existence of

i | dr. is the dist t th iod a necrotic core in the center of the simulated tumors for high
cer or necrotic cellsandr; is the distance of the occupie nutrient consumption or cell division rates. As observed in

sitei from the tumor mass center. These quantities could b?eal tumors andh vitro multicell spheroidg11], a simulated

related tot cllr;lcallaltlmplortarlt_ Crc'ite”;}. su;:_h ast p.rogresspattem consists of three distinct regions: a central necrotic
curves, rate of growtiivolumetric doubling timgat given q.e o inner rim of quiescent cancer cells, and a narrow

rad('j't proln;(re]ratlvz ?nd necro'gct frgcttlons_ of thte tum’or. Irl'_ outer shell of proliferating cells. These different regions are
me |cme,d _tese ata are UTSE Obt € erdmme allt umors maligigent in Fig. 5 where the cancer cell density and average
hancy and ItS prognosis. 1he obtained results areé SUmmag| givision rate are plotted for a longitudinal cut across the

nzcgj N .Iatilr? 1& tailed mi . hani f Wthgrowth pattern. As one can see, both the cancer cell density
espite the detalled microscopic mechanisms of growthy g mitotic rates have neat sharp maxima at the tumor bor-

for”all thel st!mula:cte”d pattercr;\s the pt)rogress in time of CaNC€lers in front of and opposed to the capillary vessel. Notice
Cell populations Tollows a Lompertz curve, that the peaks for division rates are significantly narrower

_ _ e than those for cancer cell density, demonstrating that the pro-
Ne(t) =Aexp{—ex —k(t=to)]}, (10 liferative fraction of the tumor comprises just a small part

wheren is the number of sites occupied by the patteran-

as one can see in Fig. 3. Moreover, the tumor gyration radius .
Ry, as well as the number of peripheral celisalso exhibits
a Gompertz growth, contrary to the linear regimes observed
for Ry and everSSin our previous non-nutrient-limited model
[16]. So, the present model reveals that the Gompertz law of
growth for the cancer cell populations and tumor size is a 7
robust emergent feature of cancer dynamics under nutrieni
competition. It is important to notice that linear or power law JE+5 —]
fittings for the growth in time oRy and S can also be very 3
satisfactory for several simulated patterns, therefore explain-
ing our previous finding$16] and the recent experimental
observations of brain tumors grovim vitro [21]. However,
only the Gompertz law can provide good fittings for all the 1E+5 —
three quantitieN¢, Ry, andS

On the other hand, as a function of the total number of
cancer cells, botR, andSobey power law scaling given by
Ry~N¢ and S~N¢, respectively. For solid patterns these
exponents are~ 0.5 ando~ 0.5, corresponding to effective 0
circular and nonfractal patterns. As the nutrient consumption 0 50 100 150 200 20 300
increases the patterns tend to papillarylike shapes for which t
the exponentr increases towards the value 1 and the expo- FIG. 3. Gompertz growth of cancer cell population. The model
nent v varies in the rang¢0.50,0.6Q, indicating a fractal parameters were fixed at=2/L, \y=10, Ay=200, 64,=0.3,
morphology for the tumor. It is important to mention that 4,,,,=2, and,4,=0.03. The solid line corresponds to a nonlinear
increasing cell motility contributes to round and homogenizsfitting with r?=0.9995.

3E+5 —
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5 S W 2

hy=50 Ly =100 A =200

FIG. 4. Simulated growth patterns exhibiting a necrotic dare
black. The model parameters are=2/L, \y=25, 64,=0.3,
Omov=2 (without cell migration, and 64,=0.03. The fraction of
necrotic cells is smaller for papillary patterns than compact ones,
suggesting that the optimal growth morphology under strong nutri-
ents limitation is fractal.

of the cancer cells localized at the tumor border.

However, in the present nutrient-limited model the dis-
connected patterns common in cancers of round ¢EIts.
1(e)] correspond to transient behaviors of the model for low
mitotic rates and high cell migration of cancer cells. Also,
the ramified morphology of a trichoblastoma seen in Fig.

6(d) could not be qualitatively reproduced by the model. A £ 6. simulated patterns of the nutrient-limited cancer growth
worthwhile feature of this pattern is the presence ofynodel including the influence among cancer cells mediated by

“leaves,” the growth of each one clearly influencing the oth- growth factors.(a) compact(k=0.1 andé,,,=1), (b) ramified (k

ers. The Simple introduction of cell m0t|||ty sensitive to the =0.025 and Omov= 1) morph0|ogies, and(c) disconnected(k
nutrient gradients failed to generate stationary disconnected 0.025 andé,,,,=0.1). The remaining parameters of the model
or ramified patterns. Therefore, in addition to the nutrientwere fixed ata=3/L, 64,=0.5, N*=64=0.01, \=5 and T’
field, it appears that a chemotactic interaction among cancet 10. The tissue size is 560600, with the initial “cancer seed”
cells guiding their migration must be in action. The nature of300 sites distant from the capillary and the total number of cancer
this biological interaction and the results of its simulationcells is 5x 10%. For comparison, a real ramified pattern observed in
will be focused on in Sec. IV. trichoblastoma is shown ifd).

cancer cell and hence its division and migration. Thus, both
IV. GROWTH FACTORS diffusive fields(nutrients and growth factorsletermine the

From the biological point of view the chemotactic re- local probabilities for cancer cells to divide, migrate, and die.

sponse to growth factors released by cancer cells seems to

be, in addition to nutrient supply, another central feature in A. The model

cancer development. The reciprocal influence among cancer In order to investigate the role of growth factors in a
cells mediated by autocrine and paracrine growth factorsputrient-limited growth, we simplify our model by consider-

motility factors, etc., influence the microenvironment of eaching a single nutrient field described by the diffusion equation,

FIG. 5. (a) Density of cancer
cellso. and(b) division rateswg;,
as a function of the distance from
a the capillary vessel along a tumor
longitudinal cut. The model pa-
%0.4 — rameters were fixed atv=2/L,
1 Am=25, A\y=50, 645i,=0.3, 0oy
E =o (without cell migration, and
f4e=0.03. Sharp maxima at the
09 | tumor borders near and opposed
to the capillary vessel at=0 are
evident. Therefore, the prolifera-

tive fraction of cancer cells is dis-
5 ——s l I_/\\ tributed in a thin shell on the tu-

I mor border.
500 0 100 200 300 400 500
X

06 —

<oe(x) >

021907-6



REACTION-DIFFUSION MODEL FOR THE GROWTH ©. .. PHYSICAL REVIEW E 65 021907

) Cell migration involves large citoskeleton reorganizations
Fr DNV N—yNo,—AyNoy, (11)  that consume energy and is facilitated by GFs, which destroy
the extracellular matrix and the adhesivity structures between
in which y and Ay are the nutrient consumption rates of normal cells. ThusP,, is written as
normal and cancer cells, respectively. The boundary condi- N~ S o
tions are the same described in Sec. Il. In turn, the growth pmov()z,gr):1_EXF{N(X)G(X)[G(X) G(x)]

factor (GF) concentration obeys the diffusion equation Omov ’ an
J
i DgV2G—k?’G+T o N(Gy—G), (12)  implying that a cell migrates in a gradient-sensitive way to-

wards sites where the GF concentration is lower than that at
starting point.

which includes the natural degradation of GFs, also imposingi;IS Finally, cell death is produced by the lack of nutrients

a characteristic length 1/k for GFs diffusion, and a produc-

tion term increasing linearly with the local nutrient concen- N \2
tration up to a saturation valug,,. Therefore, we are as- Pde|(>2)=exp{—( ) (18
suming that the release of GFs involves complex metabolic TcBdel
processes supported by nutrient consumption. The boundary
conditions satisfied by the GF concentration fieldGi&X,t) B. Results
=0 at a large distanced(>2/k) from the tumor border. In Fig. 6 typical compact, ramified, and disconnected
Again, the number of parameters in E¢8) and(10) can  gimylated patterns are shown. The ramified structure shown
be reduced by using the new dimensionless variables, in Fig. 6(b) should be compared with the pattern of a tricho-
Dt 2 N G blastoma exhibited in Fig.(f). In contrast to the compact
t = _N2 X'=— N=—, G'=—, fingers of the papillary patterns of the preceding section, in
A A Ko G these ramified morphologies the tumor has fjords and tips
similar to those observed in DNA patterns. We emphasize
_ ﬂ‘z vz K=k A_2 v I F_AZ _ D¢ that without chemotactic signaling among cancer cells the
““Iby) "Dy " Dy’ Dy’ nutrient-limited model cannot generate stationary discon-

(13 nected patterns. The reason is that on average GFs drive cell
_ _ _ » migration outward, promoting the tumor expansion and, in
Using these new variables in Ed8) and(10) and omitting  consequence, generating disconnected patterns for high cell

the primes, we obtain motility. Again, the patterns were characterized by its gyra-
N tion radiusR,, total number of cancer cellS¢, and number
a_zva_ a®No,— N a?No, (14) of cells on tumor periphens. Essen_tial_ly the same resu_lts
at were obtained for cancer progress in time, scaling relations,
and spatial structures, exhibiting a central necrotic core, an
and inner rim of quiescent cells and a narrow outer shell of pro-
96 liferating cells.
—=DV?G-k’G+To,N(1-G) (15
ot V. CONCLUSIONS

for the diffusion equations. The boundary condition for the A nutrient-limited model for the growth of avascular tu-
nutrients on the capillary vessel becondfx=0)=1 and a mors was investigated by numerical simulation. In its origi-
valueA =1 is defined. In addition, in the stationary state thenal version, cell proliferation, motility, and death were lo-
parameteD in Eq. (13) can be put equal to unity by rescal- cally regulated by the concentration of nutrients supplied by
ing the parameterk andI". So, the diffusion equations for a distant capillary vessel. These nutrients were divided into
the nutrients and GFs involve four parameters. two groups, the first associated with the usual metabolic cell
On the other hand, the cell dynamics has essentially theeeds and the second essential to the synthesis of proteins
same rules used in Sec. I, but with different cell action prob-and nucleic acids involved in cell division. The nutrient con-
abilities. The single change introduced is that after cell divi-centration fields were determined by solving the diffusion
sion the daughter cell stands at the same site occupied by iesjuation on the square lattice modeling the primary tissue.
mother. Since nutrients are essential to the large protein an@ur simulation results show that the progress in time of the
DNA synthesis necessary for cell mitosis and GFs act asotal number of cancer cells, tumor gyration radius, and num-
mitotic inductors, the proposed form &, is ber of cells on the tumor border is described by Gompertz
curves. The compact and papillary or fingerlike morpholo-
gies generated obey different scaling laws for different num-
bers of peripheral cancer cells. For compact pattesns
~N¥? as in the Eden model, whereas for papillary patterns
The parameteN* determines the nutrient-poor level below the exponent in the power law increases towards unity as the
which the cancer cells’ reproduction is inhibited. nutrient consumption increases, indicating a fractal morphol-

. (16)

R { (N )GZ
Pdiv(X):l_eX — O'__N* —5—

2
c 0div
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ogy for the tumor. Since in this model the cell migration is paper is an attempt to connect the macroscopic diffusion
not driven by chemotactic signals secreted by the cancesquations for nutrients and/or growth factors to cell response
cells, cell motility contributes to round and homogenize theand interactions at the microscopic scaling through an effec-
growth patterns. Also, the simulated tumors incorporate ajve kinetic cellular model. Indeed, the local probabilities
spatial structure composed of a central necrotic core, aninngs, =~ p_ = and P, describe in a stochastic way the dy-
rim of quiescent cells and a narrow outer shell of proliferat-namical processes occurring in cell populations as a response
ing cells, in agreement with biological data. to the nutrient and growth factor diffusive fields. Finally,

In order to simulate disconnected and ramified tumor patfurther studies on angiogenesis, therapy, and tumor-host in-

terns, typical of round cells tumors and trichoblastoma, aeractions using variants of the present model are in progress.
chemotactic interaction among cancer cells mediated by

growth factors was added to the competition for nutrients.

Again, similar_ results were obtained for cancer progress in ACKNOWLEDGMENTS

time and scaling relations. Thus, the Gompertz law emerges

as a robust feature of the nutrient-limited model of cancer The authors would like to thank Dr. Lissandro Coneseic
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